Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"~
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet~
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New ~
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366~
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666~
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163~
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321~
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488~
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,~
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",~
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti~
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000, ~
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000, ~
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3640~
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3390~
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000, ~
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, ~
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2~
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, ~
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dru~
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
-For drug_cos
select (in this order): ticker
, year
, grossmargin
Extract observations for 2018
Assign output to drug_subset
-For health_cos
select (in this order): ticker
, year
, revenue
, gp
, industry
Extract observations for 2018
Assign output to health_subset
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5825000000 3914000000 Drug Manufacturer~
2 PRGO 2018 0.387 4731700000 1831500000 Drug Manufacturer~
3 PFE 2018 0.79 53647000000 42399000000 Drug Manufacturer~
4 MYL 2018 0.35 11433900000 4001600000 Drug Manufacturer~
5 MRK 2018 0.681 42294000000 28785000000 Drug Manufacturer~
6 LLY 2018 0.738 24555700000 18125700000 Drug Manufacturer~
7 JNJ 2018 0.668 81581000000 54490000000 Drug Manufacturer~
8 GILD 2018 0.781 22127000000 17274000000 Drug Manufacturer~
9 BMY 2018 0.71 22561000000 16014000000 Drug Manufacturer~
10 BIIB 2018 0.865 13452900000 11636600000 Drug Manufacturer~
11 AMGN 2018 0.827 23747000000 19646000000 Drug Manufacturer~
12 AGN 2018 0.861 15787400000 13596000000 Drug Manufacturer~
13 ABBV 2018 0.764 32753000000 25035000000 Drug Manufacturer~
-Start with drug_cos
-Extract observations for the ticker MRK from drug_cos
-Assign output to the variable drug_cos_subset
-Display drug_cos_subset
drug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc~ New Jer~ 0.305 0.649 0.131 0.15 0.114
2 MRK Merc~ New Jer~ 0.33 0.652 0.13 0.182 0.113
3 MRK Merc~ New Jer~ 0.282 0.615 0.1 0.123 0.089
4 MRK Merc~ New Jer~ 0.567 0.603 0.282 0.409 0.248
5 MRK Merc~ New Jer~ 0.298 0.622 0.112 0.136 0.096
6 MRK Merc~ New Jer~ 0.254 0.648 0.098 0.117 0.092
7 MRK Merc~ New Jer~ 0.278 0.678 0.06 0.162 0.063
8 MRK Merc~ New Jer~ 0.313 0.681 0.147 0.206 0.199
# ... with 1 more variable: year <dbl>
-Use left_join to combine the rows and columns of drug_cos_subset with the columns of health_cos
-Assign the output to combo_df
-Display combo_df
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc~ New Jer~ 0.305 0.649 0.131 0.15 0.114
2 MRK Merc~ New Jer~ 0.33 0.652 0.13 0.182 0.113
3 MRK Merc~ New Jer~ 0.282 0.615 0.1 0.123 0.089
4 MRK Merc~ New Jer~ 0.567 0.603 0.282 0.409 0.248
5 MRK Merc~ New Jer~ 0.298 0.622 0.112 0.136 0.096
6 MRK Merc~ New Jer~ 0.254 0.648 0.098 0.117 0.092
7 MRK Merc~ New Jer~ 0.278 0.678 0.06 0.162 0.063
8 MRK Merc~ New Jer~ 0.313 0.681 0.147 0.206 0.199
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
-Note: the variables ticker
, name
, location
and industry
are the same for all the observations
-Assign the company name to co_name
Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Merck & Co Inc is located in New Jersey; U.S.A and is a member of the Drug Manufacturers - General industry group.
-Start with combo_df
-Select variables (in this order): year, grossmargin, netmargin, revenue, gp, netincome
-Assign the output to combo_df_subset
combo_df_subset
# A tibble: 8 x 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
-Create the variable grossmargin_check to compare with the variable grossmargin. They should be equal. -grossmargin_check = gp / revenue
-Create the variable close_enough to check that the absolute value of the difference between grossmargin_check and grossmargin is less than 0.001
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
# ... with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
-Create the variable netmargin_check to compare with the variable netmargin. They should be equal.
-Create the variable close_enough to check that the absolute value of the difference between netmargin_check and netmargin is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome / revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
# ... with 2 more variables: netmargin_check <dbl>,
# close_enough <lgl>
-Fill in the blanks
-Put the command you use in the Rchunks in the Rmd file for this quiz
-Use the health_cos
data
-For each industry calculate -mean_grossmargin_percent = mean(gp / revenue) * 100 -median_grossmargin_percent = median(gp / revenue) * 100 -min_grossmargin_percent = min(gp / revenue) * 100 -max_grossmargin_percent = max(gp / revenue) * 100
health_cos %>%
group_by(industry) %>%
summarize(mean_grossmargin_percent = mean(gp / revenue) * 100,
median_grossmargin_percent = median(gp / revenue) * 100,
min_grossmargin_percent = min(gp / revenue) * 100,
max_grossmargin_percent = max(gp / revenue) * 100)
# A tibble: 9 x 5
industry mean_grossmargi~ median_grossmar~ min_grossmargin~
<chr> <dbl> <dbl> <dbl>
1 Biotechnology 92.5 92.7 81.7
2 Diagnostics & Re~ 50.5 52.7 28.0
3 Drug Manufacture~ 75.4 76.4 36.8
4 Drug Manufacture~ 47.9 42.6 34.3
5 Healthcare Plans 20.5 19.6 10.0
6 Medical Care Fac~ 55.9 37.4 28.1
7 Medical Devices 70.8 72.0 53.2
8 Medical Distribu~ 10.4 5.38 2.49
9 Medical Instrume~ 53.9 52.8 40.5
# ... with 1 more variable: max_grossmargin_percent <dbl>
-mean_grossmargin_percent for the industry Medical Devices is 70.8%
-median_grossmargin_percent for the industry Medical Devices is 72.0%
-min_grossmargin_percent for the industry Medical Devices is 53.2%
-max_grossmargin_percent for the industry Medical Devices is Answer
-Fill in the blanks
-Use the health_cos
data
-Extract observations for the ticker AMGN from health_cos and assign to the variable health_cos_subset
Display health_cos_subset
health_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 AMGN Amgen I~ 1.56e10 1.29e10 3.17e9 3.68e9 4.89e10 29842000000
2 AMGN Amgen I~ 1.73e10 1.41e10 3.38e9 4.34e9 5.43e10 35238000000
3 AMGN Amgen I~ 1.87e10 1.53e10 4.08e9 5.08e9 6.61e10 44029000000
4 AMGN Amgen I~ 2.01e10 1.56e10 4.30e9 5.16e9 6.90e10 43231000000
5 AMGN Amgen I~ 2.17e10 1.74e10 4.07e9 6.94e9 7.14e10 43366000000
6 AMGN Amgen I~ 2.30e10 1.88e10 3.84e9 7.72e9 7.76e10 47751000000
7 AMGN Amgen I~ 2.28e10 1.88e10 3.56e9 1.98e9 8.00e10 54713000000
8 AMGN Amgen I~ 2.37e10 1.96e10 3.74e9 8.39e9 6.64e10 53916000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
-In the console, type ?distinct. Go to the help pane to see what distinct does
-In the console, type ?pull. Go to the help pane to see what pull does
Run the code below-Assign the output to co_name
You can take output from your code and include it in your text.
-The name of the company with ticker AMGN is Amgen Inc
In following chuck
-Assign the company’s industry group to the variable co_industry
This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Amgen Inc is a member of the Drug Manufacturers - General group.
-start with health_cos THEN
-group_by industry THEN
-calculate the median research and development expenditure as a percent of revenue by industry
-assign the output to df
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Drug~
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, ~
use ggplot to initialize the chart
data is df
the variable industry is mapped to the x-axis
reorder it based the value of med_rnd_rev
the variable med_rnd_rev is mapped to the y-axis
add a bar chart using geom_col
use scale_y_continuous to label the y-axis with percent
use coord_flip() to flip the coordinates
use labs to add title, subtitle and remove x and y-axes
use theme_ipsum() from the hrbrthemes package to improve the theme
ggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev ),
y = med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL) +
theme_classic()
start with the data df
use arrange to reorder med_rnd_rev
use e_charts to initialize a chart
the variable industry is mapped to the x-axis
add a bar chart using e_bar with the values of med_rnd_rev
use e_flip_coords() to flip the coordinates
use e_title to add the title and the subtitle
use e_legend to remove the legends
use e_x_axis to change format of labels on x-axis to percent
use e_y_axis to remove labels on y-axis-
use e_theme to change the theme. Find more themes here
df %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("infographic")