Joining Data

Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.

Steps 1-6

  1. Load the R packages we will use.
  1. Read the data in the files, drug_cos.csv, health_cos.csv in to R and assign to the variables drug_cos and health_cos, respectively
drug_cos  <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos  <- read_csv("https://estanny.com/static/week6/health_cos.csv")
  1. Use glimpse to get a glimpse of the data
drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"~
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet~
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New ~
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366~
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666~
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163~
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321~
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488~
$ year         <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,~
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker      <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",~
$ name        <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti~
$ revenue     <dbl> 4233000000, 4336000000, 4561000000, 4785000000, ~
$ gp          <dbl> 2581000000, 2773000000, 2892000000, 3068000000, ~
$ rnd         <dbl> 427000000, 409000000, 399000000, 396000000, 3640~
$ netincome   <dbl> 245000000, 436000000, 504000000, 583000000, 3390~
$ assets      <dbl> 5711000000, 6262000000, 6558000000, 6588000000, ~
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, ~
$ marketcap   <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2~
$ year        <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, ~
$ industry    <chr> "Drug Manufacturers - Specialty & Generic", "Dru~
  1. Which variables are the same in both data sets
names_drug  <- drug_cos  %>%  names() 
names_health  <- health_cos  %>%  names() 
intersect(names_drug, names_health)
[1] "ticker" "name"   "year"  
  1. Select subset of variables to work with

-For drug_cos select (in this order): ticker, year, grossmargin

Extract observations for 2018

Assign output to drug_subset

-For health_cos select (in this order): ticker, year, revenue, gp, industry

Extract observations for 2018

Assign output to health_subset

drug_subset  <- drug_cos  %>% 
  select(ticker, year, grossmargin)  %>% 
  filter(year == 2018)
health_subset  <- health_cos  %>%
  select(ticker, year, revenue, gp, industry)  %>% 
  filter(year == 2018)
  1. Keep all the rows and columns drug_subset join with columns in health_subset
drug_subset  %>% left_join(health_subset)
# A tibble: 13 x 6
   ticker  year grossmargin     revenue          gp industry          
   <chr>  <dbl>       <dbl>       <dbl>       <dbl> <chr>             
 1 ZTS     2018       0.672  5825000000  3914000000 Drug Manufacturer~
 2 PRGO    2018       0.387  4731700000  1831500000 Drug Manufacturer~
 3 PFE     2018       0.79  53647000000 42399000000 Drug Manufacturer~
 4 MYL     2018       0.35  11433900000  4001600000 Drug Manufacturer~
 5 MRK     2018       0.681 42294000000 28785000000 Drug Manufacturer~
 6 LLY     2018       0.738 24555700000 18125700000 Drug Manufacturer~
 7 JNJ     2018       0.668 81581000000 54490000000 Drug Manufacturer~
 8 GILD    2018       0.781 22127000000 17274000000 Drug Manufacturer~
 9 BMY     2018       0.71  22561000000 16014000000 Drug Manufacturer~
10 BIIB    2018       0.865 13452900000 11636600000 Drug Manufacturer~
11 AMGN    2018       0.827 23747000000 19646000000 Drug Manufacturer~
12 AGN     2018       0.861 15787400000 13596000000 Drug Manufacturer~
13 ABBV    2018       0.764 32753000000 25035000000 Drug Manufacturer~

Question: Join Ticker

-Start with drug_cos

-Extract observations for the ticker MRK from drug_cos

-Assign output to the variable drug_cos_subset

drug_cos_subset  <- drug_cos  %>% 
  filter(ticker == "MRK")

-Display drug_cos_subset

drug_cos_subset
# A tibble: 8 x 9
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 MRK    Merc~ New Jer~        0.305       0.649     0.131 0.15  0.114
2 MRK    Merc~ New Jer~        0.33        0.652     0.13  0.182 0.113
3 MRK    Merc~ New Jer~        0.282       0.615     0.1   0.123 0.089
4 MRK    Merc~ New Jer~        0.567       0.603     0.282 0.409 0.248
5 MRK    Merc~ New Jer~        0.298       0.622     0.112 0.136 0.096
6 MRK    Merc~ New Jer~        0.254       0.648     0.098 0.117 0.092
7 MRK    Merc~ New Jer~        0.278       0.678     0.06  0.162 0.063
8 MRK    Merc~ New Jer~        0.313       0.681     0.147 0.206 0.199
# ... with 1 more variable: year <dbl>

-Use left_join to combine the rows and columns of drug_cos_subset with the columns of health_cos

-Assign the output to combo_df

combo_df  <- drug_cos_subset  %>% 
  left_join(health_cos)

-Display combo_df

combo_df
# A tibble: 8 x 17
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 MRK    Merc~ New Jer~        0.305       0.649     0.131 0.15  0.114
2 MRK    Merc~ New Jer~        0.33        0.652     0.13  0.182 0.113
3 MRK    Merc~ New Jer~        0.282       0.615     0.1   0.123 0.089
4 MRK    Merc~ New Jer~        0.567       0.603     0.282 0.409 0.248
5 MRK    Merc~ New Jer~        0.298       0.622     0.112 0.136 0.096
6 MRK    Merc~ New Jer~        0.254       0.648     0.098 0.117 0.092
7 MRK    Merc~ New Jer~        0.278       0.678     0.06  0.162 0.063
8 MRK    Merc~ New Jer~        0.313       0.681     0.147 0.206 0.199
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
#   rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
#   marketcap <dbl>, industry <chr>

-Note: the variables ticker, name, location and industry are the same for all the observations


-Assign the company name to co_name

co_name  <- combo_df  %>% 
  distinct(name) %>% 
  pull()

-Assign the company location to co_location
co_location  <- combo_df  %>% 
  distinct(location)  %>% 
  pull() 

-Assign the industry to co_industry group
co_industry  <- combo_df  %>% 
  distinct(industry)  %>% 
  pull() 

Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.

The company Merck & Co Inc is located in New Jersey; U.S.A and is a member of the Drug Manufacturers - General industry group.


-Start with combo_df

-Select variables (in this order): year, grossmargin, netmargin, revenue, gp, netincome

-Assign the output to combo_df_subset

combo_df_subset  <- combo_df  %>% 
  select(year, grossmargin, netmargin, 
  revenue, gp, netincome)

-Display combo_df_subset
combo_df_subset
# A tibble: 8 x 6
   year grossmargin netmargin     revenue          gp   netincome
  <dbl>       <dbl>     <dbl>       <dbl>       <dbl>       <dbl>
1  2011       0.649     0.131 48047000000 31176000000  6272000000
2  2012       0.652     0.13  47267000000 30821000000  6168000000
3  2013       0.615     0.1   44033000000 27079000000  4404000000
4  2014       0.603     0.282 42237000000 25469000000 11920000000
5  2015       0.622     0.112 39498000000 24564000000  4442000000
6  2016       0.648     0.098 39807000000 25777000000  3920000000
7  2017       0.678     0.06  40122000000 27210000000  2394000000
8  2018       0.681     0.147 42294000000 28785000000  6220000000

-Create the variable grossmargin_check to compare with the variable grossmargin. They should be equal. -grossmargin_check = gp / revenue

-Create the variable close_enough to check that the absolute value of the difference between grossmargin_check and grossmargin is less than 0.001

combo_df_subset  %>% 
  mutate(grossmargin_check = gp / revenue,
  close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
   year grossmargin netmargin     revenue          gp   netincome
  <dbl>       <dbl>     <dbl>       <dbl>       <dbl>       <dbl>
1  2011       0.649     0.131 48047000000 31176000000  6272000000
2  2012       0.652     0.13  47267000000 30821000000  6168000000
3  2013       0.615     0.1   44033000000 27079000000  4404000000
4  2014       0.603     0.282 42237000000 25469000000 11920000000
5  2015       0.622     0.112 39498000000 24564000000  4442000000
6  2016       0.648     0.098 39807000000 25777000000  3920000000
7  2017       0.678     0.06  40122000000 27210000000  2394000000
8  2018       0.681     0.147 42294000000 28785000000  6220000000
# ... with 2 more variables: grossmargin_check <dbl>,
#   close_enough <lgl>

-Create the variable netmargin_check to compare with the variable netmargin. They should be equal.

-Create the variable close_enough to check that the absolute value of the difference between netmargin_check and netmargin is less than 0.001

combo_df_subset  %>% 
  mutate(netmargin_check = netincome / revenue,
  close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
   year grossmargin netmargin     revenue          gp   netincome
  <dbl>       <dbl>     <dbl>       <dbl>       <dbl>       <dbl>
1  2011       0.649     0.131 48047000000 31176000000  6272000000
2  2012       0.652     0.13  47267000000 30821000000  6168000000
3  2013       0.615     0.1   44033000000 27079000000  4404000000
4  2014       0.603     0.282 42237000000 25469000000 11920000000
5  2015       0.622     0.112 39498000000 24564000000  4442000000
6  2016       0.648     0.098 39807000000 25777000000  3920000000
7  2017       0.678     0.06  40122000000 27210000000  2394000000
8  2018       0.681     0.147 42294000000 28785000000  6220000000
# ... with 2 more variables: netmargin_check <dbl>,
#   close_enough <lgl>

Question: summarize_industry

-Fill in the blanks

-Put the command you use in the Rchunks in the Rmd file for this quiz

-Use the health_cos data

-For each industry calculate -mean_grossmargin_percent = mean(gp / revenue) * 100 -median_grossmargin_percent = median(gp / revenue) * 100 -min_grossmargin_percent = min(gp / revenue) * 100 -max_grossmargin_percent = max(gp / revenue) * 100

health_cos  %>% 
  group_by(industry)  %>% 
  summarize(mean_grossmargin_percent = mean(gp / revenue) * 100,
            median_grossmargin_percent = median(gp / revenue) * 100,
            min_grossmargin_percent = min(gp / revenue) * 100,
            max_grossmargin_percent = max(gp / revenue) * 100) 
# A tibble: 9 x 5
  industry          mean_grossmargi~ median_grossmar~ min_grossmargin~
  <chr>                        <dbl>            <dbl>            <dbl>
1 Biotechnology                 92.5            92.7             81.7 
2 Diagnostics & Re~             50.5            52.7             28.0 
3 Drug Manufacture~             75.4            76.4             36.8 
4 Drug Manufacture~             47.9            42.6             34.3 
5 Healthcare Plans              20.5            19.6             10.0 
6 Medical Care Fac~             55.9            37.4             28.1 
7 Medical Devices               70.8            72.0             53.2 
8 Medical Distribu~             10.4             5.38             2.49
9 Medical Instrume~             53.9            52.8             40.5 
# ... with 1 more variable: max_grossmargin_percent <dbl>

-mean_grossmargin_percent for the industry Medical Devices is 70.8%

-median_grossmargin_percent for the industry Medical Devices is 72.0%

-min_grossmargin_percent for the industry Medical Devices is 53.2%

-max_grossmargin_percent for the industry Medical Devices is Answer

Question: inline_ticker

-Fill in the blanks

-Use the health_cos data

-Extract observations for the ticker AMGN from health_cos and assign to the variable health_cos_subset

health_cos_subset  <- health_cos  %>% 
  filter(ticker == "AMGN")

Display health_cos_subset

health_cos_subset
# A tibble: 8 x 11
  ticker name     revenue      gp    rnd netincome  assets liabilities
  <chr>  <chr>      <dbl>   <dbl>  <dbl>     <dbl>   <dbl>       <dbl>
1 AMGN   Amgen I~ 1.56e10 1.29e10 3.17e9    3.68e9 4.89e10 29842000000
2 AMGN   Amgen I~ 1.73e10 1.41e10 3.38e9    4.34e9 5.43e10 35238000000
3 AMGN   Amgen I~ 1.87e10 1.53e10 4.08e9    5.08e9 6.61e10 44029000000
4 AMGN   Amgen I~ 2.01e10 1.56e10 4.30e9    5.16e9 6.90e10 43231000000
5 AMGN   Amgen I~ 2.17e10 1.74e10 4.07e9    6.94e9 7.14e10 43366000000
6 AMGN   Amgen I~ 2.30e10 1.88e10 3.84e9    7.72e9 7.76e10 47751000000
7 AMGN   Amgen I~ 2.28e10 1.88e10 3.56e9    1.98e9 8.00e10 54713000000
8 AMGN   Amgen I~ 2.37e10 1.96e10 3.74e9    8.39e9 6.64e10 53916000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
#   industry <chr>

-In the console, type ?distinct. Go to the help pane to see what distinct does

-In the console, type ?pull. Go to the help pane to see what pull does

Run the code below
health_cos_subset  %>% 
  distinct(name) %>%  
  pull(name)
[1] "Amgen Inc"

-Assign the output to co_name

co_name  <- health_cos_subset  %>% 
  distinct(name) %>% 
  pull(name)

You can take output from your code and include it in your text.

-The name of the company with ticker AMGN is Amgen Inc

In following chuck

-Assign the company’s industry group to the variable co_industry

co_industry  <- health_cos_subset  %>% 
  distinct(industry) %>% 
  pull()

This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.

The company Amgen Inc is a member of the Drug Manufacturers - General group.

Steps 7-11

  1. Prepare the data for the plots

-start with health_cos THEN

-group_by industry THEN

-calculate the median research and development expenditure as a percent of revenue by industry

-assign the output to df

df <- health_cos  %>% 
  group_by(industry)  %>%
  summarize(med_rnd_rev = median(rnd/revenue))
  1. Use glimpse to glimpse the data for the plots
df  %>% glimpse()
Rows: 9
Columns: 2
$ industry    <chr> "Biotechnology", "Diagnostics & Research", "Drug~
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, ~
  1. Create a static bar chart

use ggplot to initialize the chart

data is df

the variable industry is mapped to the x-axis

reorder it based the value of med_rnd_rev

the variable med_rnd_rev is mapped to the y-axis

add a bar chart using geom_col

use scale_y_continuous to label the y-axis with percent

use coord_flip() to flip the coordinates

use labs to add title, subtitle and remove x and y-axes

use theme_ipsum() from the hrbrthemes package to improve the theme

ggplot(data = df, 
       mapping = aes(
         x = reorder(industry, med_rnd_rev ),
         y = med_rnd_rev
         )) +
  geom_col() + 
  scale_y_continuous(labels = scales::percent) +
  coord_flip() +
  labs(
    title = "Median R&D expenditures",
    subtitle = "by industry as a percent of revenue from 2011 to 2018",
    x = NULL, y = NULL) +
  theme_classic()

  1. Save the previous plot to preview.png and add to the yaml chunk at the top
ggsave(filename = "preview.png", 
       path = here::here("_posts", "2022-03-08-joining-data"))
  1. Create an interactive bar chart using the package echarts4r

start with the data df

use arrange to reorder med_rnd_rev

use e_charts to initialize a chart

the variable industry is mapped to the x-axis

add a bar chart using e_bar with the values of med_rnd_rev

use e_flip_coords() to flip the coordinates

use e_title to add the title and the subtitle

use e_legend to remove the legends

use e_x_axis to change format of labels on x-axis to percent

use e_y_axis to remove labels on y-axis-

use e_theme to change the theme. Find more themes here

df  %>% 
  arrange(med_rnd_rev)  %>%
  e_charts(
    x = industry
    )  %>% 
  e_bar(
    serie = med_rnd_rev, 
    name = "median"
    )  %>%
  e_flip_coords()  %>% 
  e_tooltip()  %>% 
  e_title(
    text = "Median industry R&D expenditures", 
    subtext = "by industry as a percent of revenue from 2011 to 2018",
    left = "center") %>% 
  e_legend(FALSE) %>% 
  e_x_axis(
    formatter = e_axis_formatter("percent", digits = 0)
    )  %>%
  e_y_axis(
    show = FALSE
  )  %>% 
  e_theme("infographic")